Conditioned Medium of Adipose-Derived Mesenchymal Stem Cells as a Promising Candidate to Protect High Glucose-Induced Injury in Cultured C28I2 Chondrocytes

Author:

Safari Sedighe1,Eidi Akram1,Mehrabani Mehrnaz2,Fatemi Mohammad Javad3,Sharifi Ali Mohammad456ORCID

Affiliation:

1. Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran.

2. Physiology Research Center, Institute of Basic and Clinical Physiology Sciences, Kerman University of Medical Sciences, Kerman, Iran.

3. Burn Research Center, Motahari Hospital, Iran University of Medical Sciences, Tehran, Iran.

4. Department of Pharmacology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.

5. Stem cell and Regenerative Medicine research center, Iran University of Medical Sciences, Tehran, Iran.

6. Tissue Engineering Group, (NOCERAL), Department of Orthopedics Surgery, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia.

Abstract

Purpose: The aim of this study was to evaluate the protective effect of conditioned medium derived from human adipose MSCs (CM-hADSCs) on C28I2 chondrocytes against oxidative stress and mitochondrial apoptosis induced by high glucose (HG). Methods: C28I2 cells were pre-treated with CM-hADSCs for 24 hours followed by HG exposure (75 mM) for 48 hours. MTT assay was used to assess the cell viability. Reactive oxygen species (ROS) and lipid peroxidation were determined by 2,7-dichlorofluorescein diacetate (DCFH-DA) and thiobarbituric acid reactive substances (TBARS) assays, respectively. Expressions of glutathione peroxidase 3 (GPX 3), heme oxygenase-1 (HO-1), and NAD(P)H quinone dehydrogenase 1 (NQO1) were analyzed by RT-PCR. Finally, western blot analysis was used to measure Bax, Bcl-2, cleaved caspase-3, and Nrf-2 expression at protein levels. Results: CM-hADSCs pretreatment mitigated the cytotoxic effect of HG on C28I2 viability. Treatment also markedly reduced the levels of ROS, lipid peroxidation, and augmented the expression of HO-1, NQO1, and GPx3 genes in HG-exposed group. CM-ADSCs enhanced Nrf-2 protein expression and reduced mitochondrial apoptosis through reducing Bax/Bcl-2 ratio and Caspase-3 activation. Conclusion: MSCs, probably through its paracrine effects, declined the deleterious effect of HG on chondrocytes. Hence, therapies based on MSCs secretomes appear to be a promising therapeutic approaches to prevent joint complications in diabetic patients.

Publisher

Maad Rayan Publishing Company

Subject

General Pharmacology, Toxicology and Pharmaceutics,Pharmaceutical Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3