5FU-loaded PCL/Chitosan/Fe3O4 Core-Shell Nanofibers Structure: An Approach to Multi-Mode Anticancer System

Author:

Hadjianfar MehdiORCID,Semnani DariushORCID,Varshosaz JalehORCID,Mohammadi Sajad,Rezazadeh Tehrani Sayed Pedram

Abstract

Purpose: 5FU and Fe3O4 nanoparticles were encapsulated in core-shell Polycaprolactone/Chitosan nanofibers as a multi-mode anticancer system to study drug release sustainability. The structure of the core-shell drug delivery system was also optimized according to drug release behavior by artificial intelligence. Methods: The core-shell nanofibers were electrospun by a coaxial syringe. ANN was used for function approximation to estimate release parameters. A genetic algorithm was then used for optimizing the structure. Chemical assay of the optimized sample was performed by FTIR, XRD, and EDX. VSM test was conducted to measure the real amount of loaded magnetic nanoparticles. HepG2 cell cytotoxicity was studied and the results for the optimized samples with and without Fe3O4 after 72hrs were reported. Results: Feeding ratio of sheath to core and the amount of CS, Fe3O4, and 5FU had a statistical effect on nanofibers diameters, which were 300-450nm. The drug loading efficiency of these nanofibers was 65-86%. ANN estimated the release parameters with an error of 10%. The temperature increased about 5.6°C in the AMF of 216kA.m-1~300kHz and 4.8°C in the AMF of 154kA.m-1~400kHz after 20min. HepG2 cell cytotoxicity for the optimized samples with and without Fe3O4 after 72hrs were 39.7% and 38.8%, respectively. Conclusion: Since this core-shell drug release system was more sustainable compared to the blend structure despite the low half-life of 5FU, it is suggested to utilize it as post-surgical implants for various cancer treatments such as liver or colorectal cancer in the future. This system is capable of providing chemotherapy and hyperthermia simultaneously.

Publisher

Maad Rayan Publishing Company

Subject

General Pharmacology, Toxicology and Pharmaceutics,Pharmaceutical Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3