Ultrasensitive Quantification of MUC16 Antigen/Amine-Terminated Aptamer Interaction by Surface Plasmon Resonance: Kinetic and Thermodynamic Studies

Author:

Valizadeh Shahbazlou Shahnam1ORCID,Vandghanooni Somayeh2,Dabirmanesh Bahareh1,Eskandani Morteza3ORCID,Hasannia Sadegh1

Affiliation:

1. Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran.

2. Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.

3. Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran.

Abstract

Purpose: MUC16 is a commonly employed biomarker to identify and predict ovarian cancer (OC). Precise measurement of MUC16 levels is essential for the accurate diagnosis, prediction, and management of OC. This research seeks to introduce a new surface plasmon resonance (SPR) biosensor design that utilizes aptamer-based technology to enable the sensitive and real-time detection of MUC16. Methods: In this study, the sensor chip was immobilized with an anti-MUC16 aptamer (Ap) by utilizing 11-mercaptoundecanoic acid (MUA) as a linker to attach the amine-terminated Ap to the chip using EDC/NHS chemistry. Results: The results indicated that the newly created aptasensor had a detection limit of 0.03 U/mL for MUC16 concentration, with a linear range of 0.09 to 0.27 U/mL. The findings demonstrate good precision and accuracy (<15%) for each MUC16 concentration, with recoveries ranging from 93% to 96%. Additionally, the aptasensor exhibited high selectivity, good repeatability, stability, and applicability in real human serum samples, indicating its potential as a valuable tool for the diagnosis and treatment of OC. Conclusion: According to the outcomes, the designed aptasensor exhibited acceptable specificity to detect the CA125 antigen and could be utilized for the serum detection of target antigen by SPR method.

Publisher

Maad Rayan Publishing Company

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3