Inorganic Nanoparticles: Toxic Effects, Mechanisms of Cytotoxicity and Phytochemical Interactions

Author:

Bhatti Rashid1ORCID,Shakeel Hadia1,Malik Kousar1,Qasim Muhammad2,Khan Mohsin Ahmad3,Ahmed Nadeem3,Jabeen Shajia1

Affiliation:

1. Molecular Medicine Lab, Centre of Excellence in Molecular Biology, University of the Punjab, Lahore, Pakistan.

2. Department of Bioinformatics and Biotechnology, Government College University, Faisalabad, Pakistan.

3. Development of Recombinant Biopharmaceuticals Lab, Centre of Excellence in Molecular Biology, University of the Punjab, Lahore, Pakistan.

Abstract

During the last few decades, nanotechnology has gained many applications in almost all fields of life because of the unique properties of nanoparticles. Nanotechnology has specially marked its name in the field of medicine. However, nanoparticles toxicity is detrimental to human health and is a prime concern in applied medicine. They can cause insomnia, vertigo, madarosis, epistaxis, hypokalemia, lymphopenia, Alzheimer's and Parkinson's diseases, etc. There is a gap in knowledge regarding the study of the toxicological effects of nanoparticles. Mechanisms that are responsible for this toxicity are not fully understood yet. Phytochemicals have natural therapeutic effects of reducing metal nanoparticles' toxicity by acting as stabilizers and nontoxic reducing agents. However, the interaction between phytochemicals and nanoparticles is remained to be elucidated. This review will provide in-depth knowledge about the various types of inorganic nanoparticles and their associated toxicities, key parameters determining the toxic behaviour of nanoparticles, and the mechanisms behind their cytotoxicity. It also emphasizes the need for further research to understand the interaction between various phytochemicals and nanoparticles for therapeutic purposes.

Publisher

Maad Rayan Publishing Company

Subject

General Pharmacology, Toxicology and Pharmaceutics,Pharmaceutical Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3