A comparative investigation between ProTaper Next, Hyflex CM, 2Shape, and TF-Adaptive file systems concerning cyclic fatigue resistance

Author:

Koçak Sibel1ORCID,Şahin Faruk Furkan2ORCID,Özdemir Olcay3ORCID,Koçak Mustafa Murat1ORCID,Sağlam Baran Can1ORCID

Affiliation:

1. Department of Endodontics, Faculty of Dentistry, Zonguldak Bülent Ecevit University, Zonguldak, Turkey

2. Private Dental Clinic, Istanbul, Turkey

3. Department of Pedododontics, Faculty of Dentistry, Zonguldak Bülent Ecevit University, Zonguldak, Turkey

Abstract

Background. This study aimed to compare the cyclic fatigue resistance of ProTaper Next, Hyflex CM, 2Shape, and TF-Adaptive nickel-titanium endodontic file systems with various alloy properties and production methods and investigate the fractured cross-sectional surface of files due to cyclic fatigue by scanning electron microscopy (SEM). Methods. A total of 120 instruments were used (n=30). For standardization, #25/.06 apical diameter and taper angle were selected for each file system. The experiment of files was subjected to a static cyclic fatigue model. The time for files’ failure was recorded with a digital chronometer and multiplied by the rotation speed to calculate the number of cycles. Kolmogorov-Smirnov, one-way ANOVA, and post hoc Bonferroni analysis were used for statistical analysis. Statistical significance was set at P<0.05. Results. The number of cycles for the failure of files was compared between the groups, and significant differences were found (P<0.05). The number of cycles for instrument failure was recorded from the highest to the lowest as follows: Hyflex CM, TF-Adaptive, ProTaper Next, and 2Shape. Conclusion. The files were fractured at different average numbers of cycles in an artificial canal in all the groups. The Hyflex CM demonstrated better cyclic fatigue resistance than TF Adaptive, ProTaper Next, and 2Shape file systems. Factors such as production patterns, alloy properties, and the phase in which the files were produced might affect the lifespan of file systems.

Publisher

Maad Rayan Publishing Company

Subject

General Dentistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3