Palaeoarchaean TTGs of the Pilbara and Kaapvaal cratons compared; an early Vaalbara supercraton evaluated

Author:

Gardiner N.J.12,Mulder J.A.3,Kirkland C.L.4,Johnson T.E.56,Nebel O.7

Affiliation:

1. School of Earth and Environmental Sciences, University of St. Andrews, St. Andrews KT16 9AL, United Kingdom

2. School of Earth, Atmosphere and Environment, Monash University, Melbourne, Victoria 3800, Australia e-mail: nick.gardiner@st-andrews.ac.uk

3. School of Earth, Atmosphere and Environment, Monash University, Melbourne, Victoria 3800, Australia e-mail: jack.mulder@monash.edu

4. The Institute for Geoscience Research (TIGeR), School of Earth and Planetary Sciences, Curtin University, GPO Box U1987, Perth WA 6845, Australia e-mail: c.kirkland@curtin.edu.au

5. The Institute for Geoscience Research (TIGeR), School of Earth and Planetary Sciences, Curtin University, GPO Box U1987, Perth WA 6845, Australia

6. State Key Lab of Geological Processes and Mineral Resources, China University of Geosciences, Wuhan 430074, China e-mail: tim.johnson@curtin.edu.au

7. School of Earth, Atmosphere and Environment, Monash University, Melbourne, Victoria 3800, Australia e-mail: oliver.nebel@monash.edu

Abstract

Abstract The continental crust that dominates Earth’s oldest cratons comprises Eoarchaean to Palaeoarchaean (4.0 to 3.2 Ga) felsic intrusive rocks of the tonalite-trondhjemite-granodiorite (TTG) series. These are found either within high-grade gneiss terranes, which represent Archaean mid-continental crust, or low-grade granite-greenstone belts, which represent relic Archaean upper continental crust. The Palaeoarchaean East Pilbara Terrane (EPT), Pilbara Craton, Western Australia, and the Barberton Granite-Greenstone Belt (BGGB), Kaapvaal Craton, southern Africa, are two of the best exposed granite-greenstone belts. Their striking geological similarities has led to the postulated existence of Vaalbara, a Neoarchaean-Palaeoproterozoic supercraton. Although their respective TTG domes have been compared in terms of a common petrogenetic origin reflecting a volcanic plateau setting, there are important differences in their age, geochemistry, and isotopic profiles. We present new zircon Hf isotope data from five granite domes of the EPT and compare the geochemical and isotopic record of the Palaeoarchaean TTGs from both cratons. Rare >3.5 Ga EPT evolved rocks have juvenile εHf(t) requiring a chondritic source. In contrast, younger TTG domes developed via 3.5 to 3.4 and 3.3 to 3.2 Ga magmatic supersuites with a greater range of εHf(t) towards more depleted and enriched values, trace element signatures requiring an enriched source, and xenocrystic zircons that reflects a mixed source to the TTGs, which variously assimilates packages of older felsic crust and a more juvenile mafic source. EPT TTG domes are composite and record multiple pulses of magmatism. In comparison, BGGB TTGs are less geochemically enriched than those of the EPT and have different age profiles, hosting coeval magmatic units. Hafnium isotopes suggest a predominantly juvenile source to 3.2 Ga northern Barberton TTGs, limited assimilation of older evolved crust in 3.4 Ga southern Barberton TTGs, but significant assimilation of older (Hadean-Eoarchaean) crust in the ca. 3.6 Ga TTGs of the Ancient Gneiss Complex. The foundation of the EPT is younger than that for the oldest components of the Eastern Kaapvaal. Although the broader prevailing Palaeoarchaean geologic framework in which these two cratons formed may reflect similar a geodynamic regime, the superficial similarities in dome structures and stratigraphy of both cratonic terranes is not reflected in their geochemical and age profiles. Both the similarities and the differences between the crustal histories of the two cratons highlights that they are formed from distinct terranes with different ages and individual evolutionary histories. Vaalbara sensu lato represents typical Palaeoarchaean cratonic crust, not in the sense of a single homogeneous craton, but one as diverse as the continents are today.

Publisher

Geological Society of South Africa

Subject

Geology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3