The radiation-induced bystander effect: evidence and significance

Author:

Azzam Edouard I1,Little John B2

Affiliation:

1. Department of Radiology, UMDNJ–New Jersey Medical School, 185 South Orange Avenue, Newark, NJ 07103, USA

2. Harvard School of Public Health, 665 Huntington Avenue, Boston, MA 02115, USA

Abstract

A multitude of biological effects observed over the past two decades in various in vivo and in vitro cell culture experiments have indicated that low dose/low fluence ionizing radiation has significantly different biological responses than high dose radiation. Exposure of cell populations to very low fluences of particles or incorporated radionuclides results in significant biological effects occurring in both the irradiated and nonirradiated cells in the population. Cells recipient of growth medium from irradiated cultures can also respond to the radiation exposure. This phenomenon, termed the ‘bystander response’, has been postulated to impact both the estimation of risks of exposure to ionizing radiation and radiotherapy. Amplification of radiation-induced cyto-toxic and genotoxic effects by the bystander effect is in contrast to the observations of adaptive responses, which are generally induced following exposure to low dose, low linear energy transfer radiation and which tend to attenuate radiation-induced damage. In this article, the evidence for existence of radiation-induced bystander effects and our current knowledge of the biochemical and molecular events involved in mediating these effects are described. Potential similarities between factors that mediate the radiation-induced bystander and adaptive responses are highlighted.

Publisher

SAGE Publications

Subject

Health, Toxicology and Mutagenesis,Toxicology,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3