Modulation of N-nitrosodiethylamine (NDEA) induced oxidative stress by vitamin E in rat erythrocytes

Author:

Bansal A K1,Bansal M2,Soni G3,Bhatnagar D4

Affiliation:

1. Department of Biochemistry, Government Medical College, Patiala, India; CIHR Group in Matrix Dynamics, 234 FitzGerald Building, University of Toronto, 150 College Street, Toronto M5S 3E2, Canada

2. CIHR Group in Matrix Dynamics, Faculty of Dentistry, University of Toronto, Toronto, Canada

3. Department of Biochemistry, Punjab Agricultural University, Ludhiana, India

4. School of Biochemistry, D A University, Indore, India

Abstract

Nitrosamines, such as N-nitrosodiethylamine (NDEA), induced oxidative stress due to the generation of reactive oxygen species, which are capable of initiating peroxidative damage to the cell. The present study was designed to establish whether pre-treatment with vitamin E (40 mg/kg body wt, intraperitoneally (ip), twice a week for 4 weeks) to NDEA induced rats provides protection against oxidative stress caused by NDEA. A single necrogenic dose of NDEA (200 mg/kg body wt) was administered intraperitoneally (ip) to the rats with or without vitamin E pre-treatment and the animals were sacrificed on Day 7, 14 or 21 after NDEA administration. Lipid peroxidation (LPO) and the activities of antioxidant enzymes were determined in erythrocytes as indices of oxidative damage. The result showed elevated levels of LPO in erythrocytes with NDEA treatment, however, vitamin E pre-treated rats administered NDEA showed decreased LPO (Day 14 and 21). Superoxide dismutase (SOD) enzyme activity and the glutathione (GSH) content increased with NDEA treatment and remained high in vitamin E pre-treated group. Catalase (CAT), glutathione reductase (GSH-R) and glutathione-S-transferase (GST) enzyme activities declined with NDEA treatment; however, vitamin E pre-treated rats administered NDEA, showed elevation in the enzyme activities. Glutathione peroxidase (GSH-Px) activity increased in erythrocytes in vitamin E pre-treated rats administered NDEA, while SeGSH-Px activity was not affected significantly. This study demonstrates that the pre-treatment with vitamin E prior to the administration of NDEA was effective in counteracting and modulating oxidative stress in rat erythrocytes in a time-dependent manner.

Publisher

SAGE Publications

Subject

Health, Toxicology and Mutagenesis,Toxicology,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3