Tree-ring width and density data around the Northern Hemisphere: Part 2, spatio-temporal variability and associated climate patterns

Author:

Briffa Keith R.1,Osborn Timothy J.2,Schweingruber Fritz H.3,Jones Philip D.2,Shiyatov Stepan G.4,Vaganov Eugene A.5

Affiliation:

1. Climatic Research Unit, University of East Anglia, Norwich NR4 7TJ, UK;

2. Climatic Research Unit, University of East Anglia, Norwich NR4 7TJ, UK

3. Swiss Federal Institute of Forest, Snow and Landscape Research, Zurcherstrasse 111, CH-8903, Birmensdorf, Switzerland

4. Institute of Plant and Animal Ecology, Ural Division of the Russian Academy of Sciences, 8 Marta Street 202, Ekaterinburg 620219, Russia

5. Institute of Forest, Siberian Division of the Russian Academy of Sciences, Akagemgorodok, Krasnoyarsk 660036, Russia

Abstract

Patterns of summer temperature over the Northern Hemisphere, obtained from a calibration of a treering network, are presented for every year from 1600 to 1877. The network of tree-ring density chronologies is shown to exhibit spatially coherent modes of variability. These modes closely match summer half-year tempera ture variations, in terms of similar spatial patterns and similar temporal evolution during the instrumental period. They can, therefore, be considered to be proxies for the temperature patterns, and time series for the eight most dominant patterns are presented back to the late seventeenth century. The first pattern represents spatially coherent warming or cooling and it appears to respond to climate forcings, especially volcanic erup tions. Most other patterns appear to be related to atmospheric pressure anomalies and they can be partially explained by heat advection associated with anomalous atmospheric circulation. This provides the potential for reconstructing past variations in atmospheric circulation for the summer half-year. To investigate this poten tial, modes of summer-pressure variability are defined, and an attempt is made to reconstruct them using principal components regression. Poor verification statistics and high sensitivity to the design of the regression procedure provide little confidence in the reconstructions presented, which are regarded as being preliminary only. A repeat study using instrumental temperature predictors shows that the poor performance is attributable mainly to the weakness of the relationship between air temperature over land and atmospheric circulation during summer: though a relationship exists, it is not strong enough to yield reliable regression models when only a relatively short overlap period (55 years in this study) exists for calibration and verification. Further attempts to reconstruct large-scale atmospheric circulation patterns that include precipitation-sensitive networks of tree-ring data are likely to produce improved results.

Publisher

SAGE Publications

Subject

Paleontology,Earth-Surface Processes,Ecology,Archeology,Global and Planetary Change

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3