Construction of parallel one-dimensional interpolators in C++

Author:

Abilova F. V.1,Abilov M. V.1,Selimkhanov E. V.2

Affiliation:

1. Daghestan State Technical University

2. LLC “RN-BashNIPIneft”

Abstract

Objective. The purpose of this article is to research and develop interpolators in the C++ programming language, including linear, quadratic and cubic interpolators, as well as a one-dimensional RBF interpolator. The main tasks are the use of the GSL library, the Lagrange interpolation polynomial, OpenMP, and comparative analysis with the SciPy library. The experiments are aimed at evaluating the effectiveness and applicability of various interpolation methods. Method. The work uses the GSL and Eigen libraries to implement interpolators and optimize computational processes. Linear, quadratic, and cubic interpolators are used to compare performance, and a one-dimensional RBF interpolator is being developed. The Lagrange interpolation method and parallel computing using OpenMP and SIMD are also used to improve efficiency. Result. The results of the research include the successful development and implementation of various interpolation methods in C++. Particular attention is paid to the analysis of the performance and accuracy of each method. Through a comparative analysis with the SciPy library, the authors identify the advantages and disadvantages of various interpolators. The main result is the practical applicability of these methods in the context of specific interpolation problems. Conclusion. The study made it possible to make sure that the implementation of interpolators in the C ++ language has some significant advantages compared to using the SciPy library. In particular, C++ allows for more precise and faster control over calculations, which is especially important in tasks related to numerical interpolation methods. The GSL and Eigen libraries provide powerful tools for optimization and high performance computing, which allows you to achieve high efficiency when implementing interpolation in C ++.

Publisher

FSB Educational Establishment of Higher Education Daghestan State Technical University

Reference26 articles.

1. Stroustrup B. The C++ Programming Language, 4th Edition. Addison-Wesley. 2013; 1361.

2. Polovko A.M., Butusov P.N. Interpolation. Methods and computer technologies for their implementation. - St. Petersburg: BHV-Petersburg, 2004;314. (In Russ)

3. Hardy R.L. Multiquadric equations of topography and other irregular surfaces. Journal of Geophysical Research. 76 (8): 1905–1915.

4. Galassi M. GNU Scientific Library: Reference Manual, 3rd Edition. Network Theory, 2009; 573.

5. Antonov A.S. Parallel programming using OpenMP technology . Moscow: MSU, 2009; 728. (In Russ)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3