ENTROPY ANALYSIS OF HYBRID NANOFLUID FLOW OVER A ROTATING POROUS DISK: A MULTIVARIATE ANALYSIS

Author:

Prakash J.,Tripathi Dharmendra,Akkurt Nevzat,Shedd Timothy

Abstract

This article discusses the flow of a time-dependent biviscosity hybrid nanofluid boundary layer across a rotational permeable disk with effects of magnetic field and thermal radiation, and the subjective and quantitative transfer of heat flow. In the classic Von Karman issue, nanofluids comprising volume fractions of Ag-MgO/60% water and 40% ethylene glycol are considered instead of Newtonian regular fluids. The governing equations are transformed nonlinear ordinary differential equations using Von Karman transformations. The equation for the generation of entropy is calculated as a function of velocity and temperature gradient. This equation is made nondimensional by adding geometric and physical flow field-dependent parameters. The velocity profiles in the radial, tangential, and axial directions, as well as the axial pressure gradient, nanoparticle temperature distribution, local skin friction, Nusselt number, and Bejan number, are calculated by using MATLAB bvp4c. The multivariate analysis is implemented in the numerical results of the Nusselt number. A rotation parameter is generated by the spinning phenomena, which regulates the disk's movement. Increasing the rotation of the disk causes fluid velocity to accelerate in both the radial and cross-radial directions, while contrasting phenomena can be noticed in the axial velocity of the flow. The temperature and wall shear stress of a nanofluid both rise with the disc's Brinkman number and the volume fraction of nanoparticles. Increasing the thickness of the thermal boundary layer raises the axial pressure gradient. Entropy measured by the Bejan number Influences the magnetic field and the Biot number. Physical parameters presented in this article may be used to optimize the system's performance. A magnetic rotating porous disk drives could be used in nuclear space propulsion engines and in heat transfer augmentation in thermal management and renewable energy sources.

Publisher

Begell House

Subject

General Engineering,General Materials Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3