microRNA-486-5p Regulates DNA Damage Inhibition and Cisplatin Resistance in Lung Adenocarcinoma by Targeting AURKB
-
Published:2024
Issue:4
Volume:34
Page:13-23
-
ISSN:1045-4403
-
Container-title:Critical Reviews in Eukaryotic Gene Expression
-
language:en
-
Short-container-title:Crit Rev Eukaryot Gene Expr
Author:
Sun Gaozhong,Ni Kewei,Shen Jian,Liu Dongdong,Wang Haitao
Abstract
Lung adenocarcinoma (LUAD) severely affects human health, and cisplatin (DDP) resistance is the main obstacle in LUAD treatment, the mechanism of which is unknown. Bioinformatics methods were utilized to predict expression and related pathways of AURKB in LUAD tissues, as well as the upstream regulated microRNAs. qRT-PCR assayed expression of AURKB and microRNA-486-5p. RIP and dual-luciferase experiments verified the binding and interaction between the two genes. CCK-8 was used to detect cell proliferation ability and IC<sub>50</sub> values. Flow cytometry was utilized to assess the cell cycle. Comet assay and western blot tested DNA damage and <i>γ</i>-H2AX protein expression, respectively. In LUAD, AURKB was upregulated, but microRNA-486-5p was downregulated. The targeted relationship between the two was confirmed by RIP and dual-luciferase experiments. Cell experiments showed that AURKB knock-down inhibited cell proliferation, reduced IC<sub>50</sub> values, induced cell cycle arrest, and caused DNA damage. The rescue experiment presented that high expression of microRNA-486-5p could weaken the impact of AURKB overexpression on LUAD cell behavior and DDP resistance. microRNA-486-5p regulated DNA damage to inhibit DDP resistance in LUAD by targeting AURKB, implying that microRNA-486-5p/AURKB axis may be a possible therapeutic target for DDP resistance in LUAD patients.
Reference42 articles.
1. Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, Bray F. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2021;71(3):209-49. 2. Yao Y, Zhou Y, Hua Q. circRNA hsa_circ_0018414 inhibits the progression of LUAD by sponging miR-6807-3p and upregulating DKK1. Mol Ther Nucleic Acids. 2021;23:783-96. 3. Herbst RS, Morgensztern D, Boshoff C. The biology and management of non-small cell lung cancer. Nature. 2018;553(7689):446-54. 4. Ettinger DS, Wood DE, Aisner DL, Akerley W, Bauman JR, Bharat A, Bruno DS, Chang JY, Chirieac LR, D'Amico TA, DeCamp M, Dilling TJ, Dowell J, Gettinger S, Grotz TE, Gubens MA, Hegde A, Lackner RP, Lanuti M, Lin J, Loo BW, Lovly CM, Maldonado F, Massarelli E, Morgensztern D, Ng T, Otterson GA, Pacheco JM, Patel SP, Riely GJ, Riess J, Schild SE, Shapiro TA, Singh AP, Stevenson J, Tam A, Tanvetyanon T, Yanagawa J, Yang SC, Yau E, Gregory K, Hughes M. Non-small cell lung cancer, version 3.2022, NCCN clinical practice guidelines in oncology. J Natl Compr Canc Netw. 2022;20(5): 497-530. 5. Duma N, Santana-Davila R, Molina JR. Non-small cell lung cancer: Epidemiology, screening, diagnosis, and treatment. Mayo Clin Proc. 2019;94(8):1623-40.
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|