THERMAL TEMPERATURE ESTIMATION BY MACHINE LEARNING METHODS OF COUNTERFLOW RANQUE-HILSCH VORTEX TUBE USING DIFFERENT FLUIDS

Author:

Korkmaz Murat,Doğan Ayhan,Kırmacı Volkan

Abstract

In the counterflow Ranque-Hilsch vortex tube (RHVT), the output control valve on the hot fluid side is left entirely open. The data were obtained using polyamide and brass materials and nozzles at 50 kPa intervals from 150 kPa to 700 kPa inlet pressure. In counterflow RHVT, the difference (ΔT) between the temperature of the cold outflow and the temperature of the outgoing hot flow was found, and the RHVT was modeled. The deficiency in the literature was tried to be eliminated. In this study, we planned the modeling of a counterflow RHVT using compressed air, oxygen, and nitrogen gas with machine learning models to predict the thermal temperature. Linear regression (LR), support vector machines (SVM), Gaussian process regression (GPR), regression trees (RT), and ensemble of trees (ET) machine learning methods were preferred in this study. While each of the machine learning methods in the study was analyzed, 75% of all data was used as training data, 25% as a test, 65% as training data, and 35% as testing data. As a result of the analysis, when the temperatures of air, oxygen, and nitrogen gases (ΔT) were compared, the Gaussian process regression method, which is one of the machine learning models, gave the best result with 0.99 in two different test intervals, 75-25%, and 65-35%. In the ΔT estimations made in all fluids, much better results were obtained in the machine learning models estimations of nitrogen gas when compared to other gases.

Publisher

Begell House

Subject

Fluid Flow and Transfer Processes,Mechanical Engineering,Condensed Matter Physics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3