THERMAL-HYDRAULIC ANALYSIS OF A HIGH-TEMPERATURE HELIUM-GAS-COOLED REACTOR UNDER VARIOUS STEADY-STATE OPERATING CONDITIONS

Author:

Hutli Ezddin,Kridan Ramadan

Abstract

This paper focuses on thermal-hydraulic analysis, which plays a critical role in system efficiency and the selection of the optimal design of nuclear reactors. The analysis is done based on a one-dimensional computer code called MIGHT that performs a subchannel thermal-hydraulic analysis of a typical gas-cooled fast breeder reactor (GCFBR) cooled by helium (He). In steady-state operation, two typical channels, the hot and average channels, with the same flow rate and pressure drop were tested. Temperature distribution profiles and the heat flux were computed and compared for different types of power distribution. The effects of coolant mass flow rate and power level on the thermal-hydraulic performance of the tested GCFBR were investigated for cosine power profile. The results demonstrate that the lowest flow rate for the tested reactor to continue operation in the safe mode at the nominal operating power (2530 MWt) is 80&#37; of the nominal flow rate (10 &#215; 10<sup>6</sup> kg/h). The maximum cladding temperature stays within the suggested design limit of GCFRs (700-750&#176;C) when the power is increased by 10&#37; and 15&#37;. The results revealed that temperature is more sensitive to changes in power level than mass flow rate. Data of GCFBR typical reactor were used as input data and for code validation. Good agreement between tested reactor data and MIGHT code calculation concerning the reactor proves the reliability of the methodology of analysis from a thermal-hydraulic perspective. The minor discrepancies could be explained by differences in the relevant physical parameters used in each method of calculation.

Publisher

Begell House

Subject

Fluid Flow and Transfer Processes,Mechanical Engineering,Condensed Matter Physics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3