A NOVEL MACHINE LEARNING STUDY: MAXIMIZING THE EFFICIENCY OF PARABOLIC TROUGH SOLAR COLLECTORS WITH ENGINE OIL-BASED COPPER AND SILVER NANOFLUIDS

Author:

Çolak Andaç Batur,Bayrak Mustafa

Abstract

Estimating the heat transfer parameters of parabolic trough solar collectors with machine learning is crucial for improving the efficiency and performance of these renewable energy systems, optimizing their design and operation, and reducing costs while increasing the use of solar energy as a sustainable power source. In this study, the heat transfer characteristics of two different nanofluids flowing through the porous media in a straight plane underneath thermal jump conditions were investigated by machine learning methods. For the flow in the parabolic trough solar collector, two different nanofluids obtained from silver- and copper-based motor oil are considered. Flow characteristics were obtained by nonlinear surface tension, thermal radiation, and Cattaneo–Christov heat flow, which was used to calculate the heat flow in the thermal boundary layer. A neural network structure was established to estimate the skin friction and Nusselt number determined for the analysis of the flow characteristic. The data used in the multilayer neural network, which was developed using a total of 30 data sets, were divided into three groups as training, validation, and testing. In the input layer of the network model with 15 neurons in the hidden layer, 10 parameters were defined and four different results were obtained for two different nanofluids in the output layer. The prediction performance of the established neural network model has been comprehensively studied by means of several performance parameters. The study findings presented that the established artificial neural network can predict the heat transfer characteristics of two different nanofluids obtained from silver- and copper-based motor oil with deviation rates less than 0.06%.

Publisher

Begell House

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3