Assessing the Effects of Cooking Fuels on Anopheles Mosquito Behavior: An Experimental Study in Rural Rwanda

Author:

Hennessee Ian1,Kirby Miles A.2,Misago Xavier3,Mupfasoni Jackie3,Clasen Thomas1,Kitron Uriel14,Rosenthal Joshua P.5,Hakizimana Emmanuel3

Affiliation:

1. 1Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, Georgia;

2. 2Department of Global Health and Population, Harvard T.H. Chan School of Public Health, Harvard University, Boston, Massachusetts;

3. 3Malaria and other Parasitic Diseases Division, Rwanda Biomedical Center, Ministry of Health, Kigali, Rwanda;

4. 4Department of Environmental Sciences, Emory University, Atlanta, Georgia;

5. 5Fogarty International Center, National Institutes of Health, Bethesda, Maryland

Abstract

ABSTRACT. Globally, cleaner cooking fuels are increasingly promoted to reduce household air pollution. However, there is concern that reductions in smoke from biomass fuels could lead to more favorable conditions for mosquitoes and potentially increase vectorborne disease risk. We investigated household entry, host-seeking, household exit, and mortality among Anopheles mosquitoes across three cooking fuel types: wood, charcoal, and liquid petroleum gas (LPG) in six experimental huts in Rwanda. Fifty laboratory-reared Anopheles gambiae mosquitoes were released each night in entry compartments outside each hut, and fuels were burned for 1 hour in the hut verandas. Collectors conducted human landing catch during cooking and for 2 hours afterward, and CDC light traps were used for the rest of the night to measure host-seeking. Differences in each outcome were assessed using generalized linear mixed models with random effects for hut, collector, and day. Cooking with LPG compared with wood and charcoal was associated with substantial increases in household entry and host-seeking. Household exit was not significantly different across fuels, and mortality was lower in LPG-burning huts compared with wood. Although these results are not directly generalizable to field conditions, they indicate a potential for clean fuel adoption to increase exposure to Anopheles mosquitoes compared with traditional biomass fuels. Additional entomological and epidemiological studies are needed to investigate changes in disease vector exposure associated with clean fuel adoption, and evaluate whether enhanced vector control interventions should be promoted in tandem with cleaner cooking fuels.

Publisher

American Society of Tropical Medicine and Hygiene

Subject

Virology,Infectious Diseases,Parasitology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3