An Appropriate Technology Approach for Utilizing Plastic Waste Derived Cooking Fuel to Reduce Indoor Air Pollution from Solid Fuel Cooking

Author:

Foong Yansi,Browning Shelby,Seay Jeffrey

Abstract

Combating the environmental crisis caused by mismanaged plastic waste is a global challenge, especially in developing regions due to a lack of recycling availability and waste management infrastructure. One way communities can combat this challenge is by using the process of slow pyrolysis to convert plastic waste into liquid cooking fuel. Using this fuel in cookstoves can help combat the public health issue caused by breathing in smoke from a cooking fire. Open fire cooking remains a common means of cooking in the developing world, and long-term exposure to smoke can lead to chronic lung and eye health problems. The burden of these health problems falls disproportionately on women. Our hypothesis is that switching from wood fire cooking to using stoves fueled by liquid fuel produced from waste plastic will have a positive impact on indoor air pollution, including particulate matter, sulfur dioxide, and carbon monoxide. To test this hypothesis, a series of experiments to measure particulate emissions, sulfur dioxide, and carbon monoxide were conducted. Cookstoves similar to those used in households in developing countries were used when conducting experiments. The results of these experiments indicated that polyfuel produces less particulate than fire wood, with an average PM2.5 of 7.7 μg/m<sup>3</sup> compared with fire wood which had a PM2.5 of 325.6 μg/m<sup>3</sup>. Polyfuel also produces no sulfur dioxide emissions. Kerosene, which is a traditional cooking fuel in much of the world, produced sulfur dioxide emissions of 5.2 ppm under the experimental conditions. If implemented globally, the results of this research suggest that converting plastic waste into cooking fuel can not only reduce the amount of plastic waste entering the ecosystem but can also combat the global public health problems caused by open fire cooking.

Publisher

Academic Society for Appropriate Technology

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3