(Invited) Epitaxial Oxides on Silicon for CMOS and Beyond

Author:

Osten H. Joerg

Abstract

A very promising way to realize advanced future devices is using single-crystalline, closely lattice matched oxides, which will be grown epitaxially on the substrate of choice. We present results for crystalline gadolinium oxides on silicon grown by solid source molecular beam epitaxy. The dielectric properties of such oxides are sensitive to small variations in structure and symmetry. For example, thin crystalline Gd2O3 films epitaxially grown on silicon exhibit dielectric constants above 20 although the known bulk value is only around 14. The reason for that “enhancement effect” is not fully understood yet. Here, we report about different investigations on strain-induced effects on dielectric properties. We explain these effects by severe strain induced structural phase deformations. Further, dielectric properties of epitaxial oxide thin films have been found to improve significantly by incorporation of suitable dopants. To achieve optimum electrical properties from such doped oxides it is important to understand the correlation between doping and the electronic structure of the material. Finally, we will demonstrate different approaches to grow Si nanostructures embedded into crystalline rare earth oxides. By efficiently exploiting the growth kinetics one could create nanostructures exhibiting various dimensions, ranging from three dimensionally confined quantum dots to the quantum wells, where the carriers are confined in only one of the dimensions.

Publisher

The Electrochemical Society

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3