3D Printed Carbon Nanotubes Reinforced Polydimethylsiloxane Flexible Sensors for Tactile Sensing

Author:

Jain BhavyaORCID,Phand Krishnakant,Jain Vaibhav,Lahiri Indranil,Lahiri Debrupa

Abstract

Technology is constantly evolving, and chronic health issues are on the rise. It is essential to have affordable and easy access to remote biomedical measurements. This makes flexible sensors a more attractive choice owing to their high sensitivity and flexibility along with low cost and ease of use. As an additional advantage, 3D printing has become increasingly popular in areas such as biomedicine, environment, and industry. This study demonstrates 3D-printed flexible sensors for tactile sensing. A biocompatible silicone elastomer such as polydimethylsiloxane (PDMS) with low elastic modulus and high stretchability makes an excellent wearable sensor material. Incorporating CNTs at varying concentrations (0.5, 1, 2)wt% enhances the sensor’s mechanical strength, conductivity, and responsiveness to mechanical strain. In addition to enhancing the thermal stability of the composite by 44%, multi-walled carbon nanotubes (MWCNTs) also enhanced the breaking strength by 57% with a 2 wt% CNT loading. Moreover, the contact angle values improved by 15%, making it a biomedical-grade hydrophobic surface. The electrical characteristics of these sensors reveal excellent strain sensitivity, making them perfect for monitoring finger movements and biomedical measurements. Overall, 2 wt% CNT-PDMS sensors exhibit optimal performance, paving the way for advanced tactile sensing in biomedical and industrial settings.

Publisher

The Electrochemical Society

Reference30 articles.

1. 3D-printed sensors: current progress and future challenges;Khosravani;Sens. Actuators, A,2020

2. Mixed ionic and electronic conducting eutectogels for 3D-printable wearable sensors and bioelectrodes;Picchio;Adv. Mater. Technol.,2022

3. Smart 3D printed hydrogel skin wound bandages: a review;Tsegay;Polymers,2022

4. A single electronic tattoo for multisensory integration;Wang;Small Methods,2023

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3