Degradation of Cu/Ta-N/Ta/Low-k Structure via Outgassing of Low-k Dielectrics

Author:

Chen Jen-Sue,Chang Ching-Chun,JangJian Shiu-Ko,Lai Yi-Sheng

Abstract

In this work, the effects of thermal treatment on the materials characteristics of Cu/Ta-N/Ta/low-k material/<Si> structures are explored, where Ta-N layers are as-deposited amorphous TaNx (x~0.5) or polycrystalline TaN films and low-k materials include fluorinated silicate glass (FSG) and organosilicate glass (OSG). The thermal stability of the multilayered structures are examined by annealing the samples in a vacuum furnace at 400 oC for 30 or 60 min and investigated by using scanning electron microscopy, thermal desorption spectroscopy, Fourier transform infrared spectrometer, and X-ray photoelectron spectrometry. The cross- sectional images of the specimens show that delamination of the metallization layers can be eliminated by baking the dielectrics prior to the deposition of metallization layers. Furthermore, the experimental results indicate that not only water absorption but also fluorine gas outgassing should be the serious drawbacks of FSG in applications. Meanwhile, TaN is a more effective barrier to prevent Ta from interacting with FSG and Cu from diffusing than TaNx(x~0.5) is. On the other hand, for the OSG, it possesses an evidently better thermal stability as compared with FSG. The interfacial reactions between the Ta-N/Ta bi-layer and low-k materials, which degrade the devices, will be discussed in this study, too.

Publisher

The Electrochemical Society

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3