Abstract
In the present article, the application of activated carbon derived from rice husks (RHAC) with high surface area as an electrode modifier for electrochemical determination of chloramphenicol (CP) is demonstrated. The RHAC was synthesized via a two-step alkaline pretreatment followed by the application of ultrasound radiation. The obtained carbon materials were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), nitrogen adsorption/desorption isotherms, Fourier transformation Infrared (FT-IR) spectroscopy and Raman spectroscopy. It was found that the ultrasonic activation process plays a critical role in improving the textural properties of AC by removing fine particles to clean capillaries and transforming a graphitic structure to a turbostratic one. The RHAC synthesized in suitable conditions displayed a specific surface area up to 1710 m2 g−1. The glassy carbon electrode modified with RHAC exhibited an excellent electroactivity towards CP as compared to bare GCE. The voltammetry characteristics of the electrochemical sensor were studied by cyclic voltammetry (CV) and differential pulse voltammetry (DPV). This electrode had a good performance with a linear response range of 0.95–5.76 μM and a low detection limit of 0.66 μM (S/N = 3). The present promising sensor displayed high selectivity, great stability and expectable recovery for CP detection in real samples.
Publisher
The Electrochemical Society
Subject
Electronic, Optical and Magnetic Materials
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献