Glycine as an Efficient Corrosion Inhibitor for TiN Oxidation Environments

Author:

Cheng YuanshenORCID,Wang Shengli,Wang Chenwei,Yang Dexin

Abstract

In this study, the inhibition effect of glycine on TiN corrosion in hydrogen peroxide (H2O2) solution was studied through polishing experiments, static corrosion tests and electrochemical tests. According to the results of electrochemical impedance spectroscopy (EIS), 3 wt% glycine exhibited an inhibition efficiency of more than 78% for TiN corrosion due to the greatly increased charge transfer resistance at the TiN/solution interface after its addition. Scanning electron microscopy (SEM), atomic force microscopy (AFM) and Fourier transform infrared (FTIR) spectroscopy analysis provided evidence that glycine molecules adsorbed on the TiN surface to form a protective film to prevent corrosion. Adsorption isotherm studies demonstrate that spontaneous, mixed physical and chemical adsorption occurs, which follows the Temkin model. The corrosion inhibition mechanism was investigated by X-ray photoelectron spectroscopy (XPS). The results show that glycine molecules can prevent TiN from being oxidized to titanium oxide, thus reducing the corrosion intensity. This study is of importance in solving the problem of a too fast corrosion rate of TiN in an oxidizing environment.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Hebei Province

Publisher

The Electrochemical Society

Subject

Electronic, Optical and Magnetic Materials

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Review of Oxidant Corrosion Inhibition in Petroleum Engineering;Journal of Bio- and Tribo-Corrosion;2024-08-31

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3