A Charge-Based Analytical Model for Gate All Around Junction-Less Field Effect Transistor Including Interface Traps

Author:

Raut Pratikhya,Nanda UmakantaORCID

Abstract

This article proposes an analytic charge-based model that incorporates interface trapping. The model’s applicability to all operating zones includes various interface trap charges with varying doping concentrations. Using the analytical model, the impact of interface traps on different electrical parameters, such as channel potential, surface potential, electric field, and drain current, is examined. The transconductance and cut-off frequency models are also developed from the drain current model. To validate our model, the analytical model results were compared with the TCAD device simulation results and available experimental data from literature. The Fermi level location of interface traps greatly influences surface potential in the bandgap, leading to subthreshold deterioration and flat band shifting in Junction Less Field Effect Transistor (GAAJLFET) with SiO2 as a gate insulator, which leads to performance degradation of different device parameters. To decrease the impact of the interface trap on the device’s characteristics without impairing the performance, a suitable device with SiO2 and high-k gate-stack as an insulator is designed and compared with GAAJLFET with SiO2 as a gate insulator. A GAAJLFET with SiO2 as an insulating material has very different device parameters than a GAAJLFET with SiO2 and high-k gate-stack as a gate insulating material.

Publisher

The Electrochemical Society

Subject

Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3