Effect of Annealing Conditions on Recovery of Lattice Damage in a High-Energy-Implanted 4H-SiC Superjunction PIN Diode

Author:

Chen ZeyuORCID,Liu Yafei,Peng Hongyu,Cheng Qianyu,Hu Shanshan,Raghothamachar Balaji,Dudley Michael,Ghandi Reza,Kennerly Stacey,Thieberger Peter

Abstract

A high energy ion implantation system has been recently developed at the Tandem Van de Graaff facility at Brookhaven National Laboratory with tunable energy to 150 MeV capable of multi-step, deep implantation in 4H-SiC wafers with dopant atoms, such as B, P, Al, and N. Medium and high voltage devices with deep junctions can be fabricated using this system. Lattice strain introduced by the implantation process needs to be recovered and dopant atoms activated by appropriate annealing process as the device performance is strongly associated with the extent of recovery of the lattice. Using Synchrotron X-ray Rocking Curve Topography (SXRCT) and Reciprocal Space Mapping (RSM), the strain induced by high energy implantation of Al and N in 4H-SiC in different patterns are measured and mapped. It is observed that the strain levels correlate with the total fluence levels. PiN diodes fabricated on these implanted wafers were then annealed at temperatures ranging from 1700 °C to 2000 °C for 60 min. The SXRCT and RSM analysis of the annealed samples suggests that for the same annealing duration, higher temperature leads to better lattice recovery.

Funder

Advanced Research Projects Agency - Energy

Publisher

The Electrochemical Society

Subject

Electronic, Optical and Magnetic Materials

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Analysis of Lattice Damage in 4H-SiC Epiwafers Implanted with High Energy Al Ions at Elevated Temperatures;Defect and Diffusion Forum;2024-08-22

2. Demonstration of 3.5kV SiC Deep-Implanted Superjunction Didoes;2023 35th International Symposium on Power Semiconductor Devices and ICs (ISPSD);2023-05-28

3. Scalable Ultrahigh Voltage SiC Superjunction Device Technologies for Power Electronics Applications;2022 International Electron Devices Meeting (IEDM);2022-12-03

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3