Advances in In Situ Boron and Phosphorous Doping of SiGeSn

Author:

Frauenrath M.ORCID,Concepción O.,Gauthier N.,Nolot E.,Buca D.ORCID,Hartmann J.-M.

Abstract

Dopant concentrations higher than 1 × 1019 cm−3 are required to improve the performances of various GeSn based devices such as photodetectors, electrically pumped lasers and so on. In this study, the in situ Boron and Phosphorous doping of SiGeSn was investigated, building upon recent studies on in situ B or P doped GeSn. The surfaces of intrinsic and lowly doped pseudomorphic SiGeSn layers were rough. By contrast, a 〈110〉 cross hatch was recovered and surfaces as smooth as the Ge Strain-Relaxed Buffers underneath were obtained for the highest B2H6 or PH3 mass-flows. The surface Root Mean Square roughness and Zrange values were then as low as 0.36 nm and 2.86 nm for SiGeSn:B, and 0.47 nm and 4.60 nm for SiGeSn:P. In addition, Si contents as high as 25% were obtained, notably in SiGeSn:B layers. Dopants were almost fully electrically active in those SiGeSn:B and SiGeSn:P layers, with carrier concentrations as high as 2.0 × 1020 cm−3 and 2.7 × 1020 cm−3, respectively. For SiGeSn:P, the shortcoming of in situ doped GeSn:P was overcome, that is the formation of electrically inactive SnmPnV clusters for high PH3 mass-flows. Such electrically active carrier concentrations will be beneficial for (Si)GeSn based devices, but also for all Group-IV based devices with extremely low thermal budget constraints.

Funder

CEA Leti

Publisher

The Electrochemical Society

Subject

Electronic, Optical and Magnetic Materials

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Advances in GeSn alloys for MIR applications;Photonics and Nanostructures - Fundamentals and Applications;2024-02

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3