Highly Active and Durable Extended Surface Oxygen Reduction Electrocatalysts

Author:

Alia Shaun M,Neyerlin K.C.,Pylypenko Svitlana,Dameron Arrelaine A,Kocha Shyam S,Pivovar Bryan S

Abstract

The amount of platinum (Pt) in the catalyst layer accounts for a significant portion of fuel cell cost and limits the commercial deployment of proton exchange membrane fuel cells.[1] Extended surface nanomaterials have been developed as electrocatalysts in the oxygen reduction reaction for use in fuel cells. Extended surfaces offer key advantages to nanoparticles, including an order of magnitude higher specific activity, long range conductivity, and long term durability, but are traditionally limited by low surface area.[2] Catalyst development has included a variety of approaches, but recently has focused on galvanic displacement. Spontaneous galvanic displacement occurs when a less noble metal template contacts a more noble metal cation and combines aspects of corrosion and electrodeposition. Catalysts formed by spontaneous galvanic displacement are ideally situated, being able to take advantage of the specific activities generally associated with the catalyst type while significantly improving upon the surface area.[3] Recent developments in Pt-nickel (Ni) nanowires have produced materials with surface areas in excess of 90 m2 gPt ‒1.[4] Post-synthesis processing has been used to alloy the Pt-rich and Ni-rich zones, improving activity for oxygen reduction. Exposure to a variety of acid types and concentrations has been used to remove increasing amounts of Ni, creating nanostructures with high Pt surface areas and an array of compositions. Oxidative treatments have also been used to improve catalyst durability in rotating disk electrode (RDE) accelerated stress tests (30,000 potential cycles, 0.6‒1.0 V). By optimizing these techniques, extended surface electrocatalysts have been created with oxygen reduction mass activities 7 times greater than Pt nanoparticles and 5 times greater than the U.S. Department of Energy membrane electrode assembly (MEA) target in RDE half-cells. In accelerated stress tests, these materials lose less than 3% activity and less than 0.5% of their mass due to electrochemical dissolution. Remaining barriers, including synthesis scalability and MEA fabrication, are being addressed. Recent improvements in MEA performance suggest that the promise of extended surface catalysts in half-cells can be realized in the device. [1] D. Papageorgopoulos, in: U.S. Department of Energy (Ed.), http://www.hydrogen.energy.gov/pdfs/review14/fc000_papageorgopoulos_2014_o.pdf, 2014. [2] M. Debe, in: U.S. Department of Energy (Ed.), http://www.hydrogen.energy.gov/pdfs/review09/fc_17_debe.pdf, 2009. [3] S.M. Alia, Y.S. Yan, B.S. Pivovar, Catalysis Science & Technology, 4 (2014) 3589-3600. [4] S.M. Alia, B.A. Larsen, S. Pylypenko, D.A. Cullen, D.R. Diercks, K.C. Neyerlin, S.S. Kocha, B.S. Pivovar, ACS Catalysis, 4 (2014) 1114-1119. Figure 1. Surface areas (x-axis) and site-specific oxygen reduction activities (y-axis) of Pt nanoparticles and Pt-Ni nanowires, as-synthesized and modified by post-synthesis processing. The US Department of Energy MEA mass activity target (440 mA mgPt 1) is included as the solid black line. Figure 1

Publisher

The Electrochemical Society

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3