(Invited) Technology Options to Reduce Contact Resistance in Nanoscale III-V MOSFETs

Author:

Lee Rinus T.P.,Loh Wei Yip,Tieckelmann Robert,Orzali Tommaso,Huffman Craig,Vert Alexey,Huang Gensheng,Kelman Maxim,Karim Zia,Hobbs Chris,Hill Richard J.W.,Papa Rao S.S.

Abstract

III-V semiconductors have emerged as the leading candidate to replace Si as the n-FET channel material for future low power logic applications. However, to realize the full performance benefits of III-V channels, it is crucial that external parasitic resistance (Rext) be minimized. Among the different components of Rext, contact resistance (RC ), between metal and source/drain (S/D) junctions, has become the critical focus. Historically, multi-layered Au-based contacts (e.g. Au/Ge/III-V) are used in III-V processing to lower RC . However, the renewed interest in III-V semiconductors has attracted an increasing interest in developing Au-free contacts to III-V with low RC . In addition, a “silicide-like” metal contact process for III-V was recently developed by reacting Ni with InGaAs to form Ni-InGaAs. This is significant as it enables self-alignment and offers the option of using a common S/D contact metal in a hetero-integrated device flow (e.g. Ge/III-V). In this paper, we will review these RC reduction options and present some of our recent results on contact/junction engineering to lower RC in III-V MOSFETs.

Publisher

The Electrochemical Society

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3