Silver Nanoparticles Biosynthesis, Structural Characterization, Antibacterial Action, and Antioxidant Potential

Author:

Rajput Rashika,Tyagi Pankaj KumarORCID,Yadav Suhana,Sahu Shikha,Tyagi ShrutiORCID

Abstract

The goal of this work is to address the green synthesis of silver nanoparticles (AgNPs) from Cassia occidentalis leaf aqueous extract. The AgNPs were studied using UV–visible spectroscopy, transmission electron microscopy, scanning electron microscopy, and X-ray diffraction. The spectra of AgNPs had a single strong peak at 435 nm, but the spectra of extract had two peaks at 230 and 250 nm, indicating the presence of polyphenols and phytochemicals in the solution, and the X-ray diffraction patterns showed that they were crystals. Obtained nanoparticles are round and oval in shape, according to TEM and SEM investigations, with diameters ranging from 6 to 30 nm. Pathogenic microorganisms such as E. coli and B. subtilis were used to investigate AgNPs antibacterial efficacy. As a consequence, it was discovered that green AgNPs exhibit significant antibacterial activity.

Publisher

The Electrochemical Society

Subject

General Medicine

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3