Anion Exchange Membranes (AEMs) with Perfluorinated and Polysulfone Backbones with Different Cation Chemistries

Author:

Arges Christopher G.,Jung Min-Suk,Johnson Graham,Parrondo Javier,Ramani Vijay

Abstract

Perfluorinated (PF) and polysulfone (PSF) backbones have been functionalized with multiple cation chemistries with varying basicities to prepare anion exchange membranes. The different cation and polymer backbone chemistries were evaluated to ascertain their influence on cation stability in alkaline environments, ionic conductivity, water uptake, and fuel cell performance. Evidence from the several cations/backbones studied support the following conclusions: i.) Basicity of the cation is an appropriate heuristic for assessing ionic conductivity, but it is not always appropriate for comparing alkaline stability across cations with different inorganic atoms. ii.) Phosphonium cations with similar or greater basicity than ammonium cations are observed to have less water uptake, but degrade more rapidly since they favor the formation of ylides. iii.) PF backbones with a sulfonyl group adjacent to the cation site exhibit a higher rate of cation site degradation in comparison to PSF backbones that have a benzyl group adjacent to the cation.

Publisher

The Electrochemical Society

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3