Abstract
The deformation mechanics of a typical gas diffusion layer using experimental and advanced modelling technique is reported. The experimental cyclic response is observed similar to pseudo-elastic materials with highly nonlinear loading/unloading. The cyclic compressive mechanical response of gas diffusion layer (GDL) is modelled to be the outcome of cumulative changes in deformation kinematics of matrix and fiber fractions. The individual mechanisms necessitating the energy dissipation, residual strain, and stress softening during cyclic mechanical response are related to nonlinear hyperelastic matrix with the damage function and inelastic activation function at the interface of constituents. The model predicts highly nonlinear elastic loading, residual strain, hysteresis, and damage quotient associated with stress softening as a function of several cycles. The significant takeaway from this study is in terms of quantifying strength, inelastic nature of individual constituents. The proposed model is simulated for low-level altering stresses of up to twenty cycles. The results show the build-up of residual strains and hysteresis as a function of fuel cell clamping pressure.
Funder
Indian National Science Academy
Science and Engineering Research Board
Publisher
The Electrochemical Society
Subject
Materials Chemistry,Electrochemistry,Surfaces, Coatings and Films,Condensed Matter Physics,Renewable Energy, Sustainability and the Environment,Electronic, Optical and Magnetic Materials
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献