Mathematical Modeling of Energy-Dense NMC Electrodes: I. Determination of Input Parameters

Author:

Nguyen Tuan-Tu,Delobel Bruno,Berthe Maxime,Fleutot Benoît,Demortière Arnaud,Delacourt CharlesORCID

Abstract

Physics-based models of the Li-ion battery are promising to decipher and quantify the electrode limitations, thereby providing valuable insights for choosing the optimal electrode design for a specific application. However, to obtain relevant results from the models, a reliable set of input parameters is required. This work presents a combined experimental/modeling approach relying on the Newman pseudo-2D model for a complete characterization of a set of LiNi0.5Mn0.3Co0.2O2 electrodes. Intrinsic properties of the active materials are determined and validated using low-loading electrodes having negligible porous-electrode limitations. Then, high-energy-density electrode properties are characterized using appropriate experimental methods, which are widely reported in the literature. In the second part of this series of papers, parameters obtained from this part serve as input parameters in the Newman pseudo-2D model as well as in its extension in order to simulate the rate capability during discharge of the aforementioned set of high-energy-density electrodes. List of symbols a i m i 2 / m PE 3 interfacial surface area of phase i c s , surf mol m 3 concentration at the surface of the AM particle c s , max mol m 3 maximum concentration of intercalated Li in AM particle c s mol m 3 solid-phase Li concentration within the AM particle c ¯ s mol m 3 local volume-averaged solid Li concentration of AM phase within the PA c mol m 3 salt concentration in a binary electrolyte d 50 μ m median diameter of AM particles D m 2 s 1 bulk diffusion coefficient of the liquid phase D s m 2 s 1 diffusion coefficient of Li in the AM particles F C mol 1 Faraday’s constant i coexisting phase presented in the PE i n 0 A m 2 exchange current density i Li 0 A m 2 exchange current density at the Li foil I app A / m CC 2 discharge current density j n mol / m AM 2 · s pore-wall flux across the sandwich k 0 mol m 2 · s · mol m 3 1.5 1 reaction rate constant of the AM k 0 , Li mol m 2 · s · mol m 3 0.5 1 reaction rate constant of Li foil L el μ m PE thickness L sep μ m separator thickness Q th Ah kg 1 electrode theoretical capacity R J mol · K 1 ideal gas constant r μ m radial dimension along the AM particle T K absolute temperature t s time t + 0 transference number of Li+ in the electrolyte with respect to the solvent velocity U V equilibrium potential of the AM Δ V V voltage drop between the two inner contacts in the μ4-probe experiment x μ m dimension across the sandwich x 0 initial stoichiometry Greek Symbols α thermodynamic factor β charge transfer coefficient ε m elyte 3 / m PE 3 PE porosity ε sep m elyte 3 / m sep 3 separator porosity κ eff S m 1 effective ionic conductivity of the liquid phase ρ el g cm 3 electrode density σ eff S m 1 effective electronic conductivity of the solid phase of the electrode τ Br tortuosity factor by Bruggeman τ e electrode tortuosity factor τ sep tortuosity factor of the separator Φ 1 , Li V electric potential at Li foil Φ i V electric potential of phase i

Funder

Association Nationale de la Recherche et de la Technologie

Publisher

The Electrochemical Society

Subject

Materials Chemistry,Electrochemistry,Surfaces, Coatings and Films,Condensed Matter Physics,Renewable Energy, Sustainability and the Environment,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3