Abstract
High levels of nitric oxide (NO) can signal nitrosative stress, but its analysis is challenging considering the high reactivity, short half-life and transient behavior of this target molecule in biological milieu. In this work, a cardanol-based salophen-modified carbon paste electrode (CDN-salophen/MCPE) was developed and successfully applied to assess NO bioavailability in blood plasma of mice under induced stress. The results revealed that the modifier improved the device performance in terms of signal-to-noise ratio, charge-transport and fouling resistance. NO reactivity on CDN-salophen/MCPE was higher in 0.1 mol l‒1 H2SO4, and the resulting redox process involves adsorption steps that control the reaction kinetics. Monitoring molecule oxidation by square-wave voltammetry (100 s−1 frequency, 30 mV amplitude, 2 mV scan increment, after electrode preconditioning at 0.9 V for 15 s for analyte accumulation), it was possible to identify and quantify NO with great sensitivity (detection and quantification limit < 0.1 μmol l‒1) and low data variance (RSD ≤ 9.4% for repeatability and reproducibility tests), through a simple, fast and reliable electroanalytical protocol. The robustness acquired with CDN-salophen/MCPE allowed to detect changes in NO content in blood plasma during nitrosative stress, proving its efficiency for research on this subject.
Funder
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior
Conselho Nacional de Desenvolvimento Científico e Tecnológico
Fundação Amazônia Paraense de Amparo à Pesquisa
UFCA’s Pro-Rectory of Research, Postgraduate Studies and Innovation
Publisher
The Electrochemical Society
Subject
Materials Chemistry,Electrochemistry,Surfaces, Coatings and Films,Condensed Matter Physics,Renewable Energy, Sustainability and the Environment,Electronic, Optical and Magnetic Materials