Abstract
In this work, we synthesized MnO2/CeO2 electrocatalysts by in situ decoration of α–MnO2 with CeO2 particles during a one-step hydrothermal process. The morphology, composition, and electrochemical properties were studied in the context of application to the oxygen reduction reaction (ORR) and Mg-air battery. According to the results, α–MnO2/CeO2 microfibres exhibited better ORR performance than α–MnO2 microfibres due to the synergistic result between the introduction of Ce3+ in CeO2 lattice and the enhancement of Mn3+ content in MnO2 lattice. α–MnO2/CeO2 microfibres provided a higher surface area and more catalytic active sites than α–MnO2 microfibres by controlling the molar ratio of Ce3+/Mn7+ for the precursor. When the mole ratio of Ce3+ and Mn7+ in the precursors was 10%, the four-electron transfer process of the MnO2/CeO2 microfibres (MC-140-12-10) was found to be similar to that of the 20 wt% Pt/C commercial catalysts. MC-140-12-10 microfibres also showed the excellent long-term stability after 25,000 s and superior Mg–air battery performances than α–MnO2. Hence, the work paves the way for developing Mg-air batteries through a simple synthesis and cost-effective ORR catalyst.
Funder
R & D of Key Technology of Light Metal Air Battery, Transformation and Industrialization of Scientific and Technological Achievements of Hunan Province
Technical Area Fund of Foundation Strengthening
R & D of Key Technology and Materials of Magnesium Air Battery, Transformation of Scientific and Technological Achievements of Chang Sha City
the Graduate Scientific Research Innovation Project of Central South University
Publisher
The Electrochemical Society
Subject
Materials Chemistry,Electrochemistry,Surfaces, Coatings and Films,Condensed Matter Physics,Renewable Energy, Sustainability and the Environment,Electronic, Optical and Magnetic Materials
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献