Insights from the Physicochemical and Electrochemical Screening of the Potentiality of the Chemically Synthesized Polyaniline

Author:

Djara Razik,Holade YaoviORCID,Merzouki Abdelhafid,Masquelez Nathalie,Cot Didier,Rebiere Bertrand,Petit Eddy,Huguet Patrice,Canaff Christine,Morisset Sophie,Napporn Teko W.,Cornu David,Tingry SophieORCID

Abstract

Polyaniline (PANI) is a candidate for electrocatalysis, and can be combined with metal nanoparticles to fabricate high-performance electrodes for electrochemical energy conversion and storage. However, its intrinsic properties appear to be dependent on the synthesis conditions so that from the majority of the reports, it is quite difficult to establish an overall performance trend. In this contribution, we report an extensive and systematic physicochemical and electrochemical screening of the potentiality of chemically synthesized PANI as an electrode material to provide an overall understanding of the effect of the entire synthesis conditions. We have integrated different methods (TGA-DSC, XRD, SEM, EDX, FTIR, BET, CHNS, XPS, CV, and EIS) to deeply examine the as-synthesized materials and interrogate their electrocatalytic efficiency towards hydrogen evolution reaction, which was chosen as a model reaction of critical importance for H2 production from water splitting. It was found that all the synthesis parameters affect strongly the physical and electrochemical characteristics of the PANI-based materials. Specifically, XPS analysis contributed to identify the oxidation levels of the PANI samples on the basis of oxidizing agents. The outcomes provided by the study delineate a rational pathway for the further design and fabrication of PANI-based metal nanoparticles as advanced electrode materials.

Funder

Campus France

Publisher

The Electrochemical Society

Subject

Materials Chemistry,Electrochemistry,Surfaces, Coatings and Films,Condensed Matter Physics,Renewable Energy, Sustainability and the Environment,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3