Author:
Jones John-Paul,Smart Marshall C.,Krause Frederick C.,Bugga Ratnakumar V.
Abstract
The effects of lithium-ion electrolyte additives in ester-rich low temperature electrolyte blends, including vinylene carbonate (VC), lithiuma bis(oxalato) borate (LiBOB), lithium difluoro(oxalato)borate (LiDFOB), propane sultone (PS) and lithium bis(fluorosulfonyl)imide (LiFSI), upon the likelihood of lithium plating are investigated in graphite-LiNiCoAlO2 three-electrode cells. Although metallic lithium is generally absent in lithium-ion cells, certain conditions, particularly charging at low temperature and/or at high rate, can lead to lithium metal plating on the surface rather than intercalating into the carbon anode. Metallic lithium reacts with the electrolyte and forms dendrites upon continuous plating, which can lead to cell shorting and capacity loss. The type of carbon anode, electrolyte, and solid-electrolyte-interphase (SEI) all influence this behavior. SEI stabilizing additives are generally detrimental to low temperature charging performance, however, 0.1 M LiFSI was found to be advantageous to low temperature charging. When charged at a C/5 rate to 4.10 V, lithium plating was evident at ∼20 °C higher temperature with VC and LiBOB additives compared to the baseline electrolyte without any additives (plating appears at −10 °C rather than −30 °C with the baseline electrolyte). In contrast, the cell containing 0.10 M LiFSI as an additive did not display lithium plating until −40 °C, or 10 °C lower than the baseline cell.
Publisher
The Electrochemical Society
Subject
Materials Chemistry,Electrochemistry,Surfaces, Coatings and Films,Condensed Matter Physics,Renewable Energy, Sustainability and the Environment,Electronic, Optical and Magnetic Materials
Cited by
62 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献