Abstract
Electrolysis of ethanol in a proton exchange membrane (PEM) cell is an attractive method for generating hydrogen from renewable resources. However, the most active anode catalysts, such as PtRu, produce acetic acid as the main product, which makes the process very inefficient. Core–shell nanoparticles can improve efficiency by providing more selective cleavage of the C–C bond at a Pt shell. Here, the influence of the amount of Pt deposited onto a commercial PtRu/C catalyst has been investigated for electrochemical oxidation of ethanol and methanol, in aqueous H2SO4 at ambient temperature and in a PEM electrolysis cell at 80 °C. It is shown that addition of a Pt shell improves voltammetric activity markedly for both methanol and ethanol oxidation, while half-wave potentials in the PEM cell are shifted to higher potentials as the Pt coverage is increased. However, limiting currents for ethanol oxidation in the PEM cell are increased, and it is shown that the distribution of products shifts strongly towards CO2, which provides more efficient production of hydrogen.
Funder
Natural Sciences and Engineering Research Council of Canada
Publisher
The Electrochemical Society
Subject
Materials Chemistry,Electrochemistry,Surfaces, Coatings and Films,Condensed Matter Physics,Renewable Energy, Sustainability and the Environment,Electronic, Optical and Magnetic Materials
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献