Feature-Driven Closed-Loop Optimization for Battery Fast Charging Design with Machine Learning

Author:

Zhang YongzhiORCID,Han Dou,Xiong Rui

Abstract

Electric vehicle batteries must possess fast rechargeability. However, fast charging of lithium-ion batteries remains a great challenge. This paper develops a feature-driven closed-loop optimization (CLO) methodology to efficiently design health-conscious fast-charging strategies for batteries. To avoid building an early outcome predictor, the feature highly related to battery end-of-life is used as the optimization objective instead of using the predicted lifetime. This feature is extracted from the battery’s early cycles and the experimental cost is thus reduced. By developing closed-loop multi-channel experiments with Bayesian optimization (BO), the optimal charging protocols with long cycle lives are located quickly and efficiently among 224 four-step, 10 min fast-charging protocols. Experimental results show that BO performs well with different acquisition functions, and a minimum of 12 paralleled channels for each round of experiments are recommended to obtain stable optimization results. Compared with the benchmark, the developed method recommends similar fast-charging protocols with long cycle lives based on much less experimental cost.

Funder

Sichuan Province Science and Technology Support Program

National Key Technology Research and Development Program of China

Publisher

The Electrochemical Society

Subject

Materials Chemistry,Electrochemistry,Surfaces, Coatings and Films,Condensed Matter Physics,Renewable Energy, Sustainability and the Environment,Electronic, Optical and Magnetic Materials

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3