Electrochemical and Kinetic Analysis of Manganese Electrolytes for Redox Flow Batteries

Author:

Ramirez Erlantz Villar,Lindström Rakel Wreland,Khataee AmirrezaORCID

Abstract

The hybrid hydrogen-manganese redox flow battery (H2-Mn RFB) is a promising and sustainable electrochemical system for long-duration energy storage. One strong reason is the excellent features of manganese, such as low cost, abundance, environmental friendliness, and relatively high standard potential (+1.51 V). Nevertheless, the electrochemical and kinetic parameters of manganese electrolytes have not been studied in detail for flow batteries. In the present work, the kinetics of the Mn2+/Mn3+ redox species in an electrolyte composed of 1M TiOSO4 and 1M MnSO4 in 3M H2SO4 were studied on carbon paper electrodes. The kinetic analysis of manganese redox species (Mn2+/Mn3+) in the presence of TiO2+ was performed using cyclic voltammetry and electrochemical impedance spectroscopy techniques within the H2-Mn RFB set-up. The results were compared to reference redox species vanadium (VO2+/VO2 +) within H2-V RFB system. The results showed that the heterogeneous electron transfer rate constant (8.6 × 10−7 cm s−1) of manganese is comparable to that of vanadium (4.8 × 10−6 cm s−1), with less than an order of magnitude difference between them.

Funder

Energimyndigheten

Publisher

The Electrochemical Society

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3