Simultaneous Electrochemical Reduction of Carbon Dioxide and Partial Oxidation of Methane in a Solid Oxide Cell with Silver-Based Cathode and Nickel-Based Anode

Author:

Zhou Mingyang,Liu Zhijun,Yan Xiaomin,Tan Kai,Tian Fengyuan,Liu JiangORCID

Abstract

Simultaneous electrochemical reduction of CO2 and partial oxidation of CH4 in a solid oxide cell (CO2/CH4 redox SOC) with Ag-based cathode and Ni-based anode is compared with CO2 reduction in a solid oxide electrolysis cell (CO2-SOEC) and CH4 oxidation in a solid oxide fuel cell (CH4-SOFC). Overpotential losses from different sources and gases products from each electrode are analyzed. Results show that the process of a CO2/CH4 redox SOC is exactly a combination of the cathode process of a CO2-SOEC and the anode process of a CH4-SOFC. With the same CO and syngas obtained, a CO2/CH4 redox SOC consumes less energy because it avoids oxygen evolution reaction (OER) of a CO2-SOEC and oxygen reduction reaction (ORR) of a CH4-SOFC. At 500 mA cm−2, the overall resistance of an electrolyte-supported CO2/CH4 redox SOC is only half of that for separately reducing CO2 in an SOEC and oxidizing CH4 in an SOFC. The conversion of CH4 and yield of H2 in the SOC approach 81% and 63%, respectively. An anode-supported CO2/CH4 redox SOC is operated stably for 110 h at 1 A cm−2 under an applied voltage of ∼0.9 V. Sufficient current density may prevent high performance Ni-based anode from coking.

Funder

National Natural Science Foundation of China

Publisher

The Electrochemical Society

Subject

Materials Chemistry,Electrochemistry,Surfaces, Coatings and Films,Condensed Matter Physics,Renewable Energy, Sustainability and the Environment,Electronic, Optical and Magnetic Materials

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3