Abstract
As an alternative to Li-ion battery (LIB) microporous membrane separators that are typically comprised of polyolefins, other materials and separator morphologies may yield increased cell performance. Here, we present a new class of LIB separators comprising poly(vinylidene difluoride) (PVDF)-based and highly branched, colloidal polymer particulates, called soft dendritic colloids, that are produced by shear-driven polymer precipitation within a turbulent nonsolvent flow followed by filtration. We show the morphology of the resulting PVDF particulates may be varied from fibrous dendritic colloids to thin and highly porous sheet-like particles. The use of PVDF leads to low thermal shrinkage (5% at 90 °C) and high tensile strength (<0.7% offset at 1000 psi), while the high porosity (up to 80%) and high particle surface area are responsible for high conductivity (1.2 mS cm−1) and electrolyte uptake (325%), and good cell capacity (112 mAh g−1 in Li/LiCoO2 cell) with <10% loss after 50 cycles. Because shear-driven precipitation with filtration is a facile and versatile process to make a new class of polymeric LIB separators, soft dendritic colloids are promising candidates as separators for next-generation batteries.
Funder
US National Science Foundation
North Carolina State University
Publisher
The Electrochemical Society
Subject
Materials Chemistry,Electrochemistry,Surfaces, Coatings and Films,Condensed Matter Physics,Renewable Energy, Sustainability and the Environment,Electronic, Optical and Magnetic Materials
Cited by
14 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献