Ratiometric Electrochemical Biosensor Based on Internally Controlled Duplex PCR for Detection of Mycobacterium Tuberculosis

Author:

Bunyarataphan SasineeORCID,Prammananan Therdsak,Japrung Deanpen

Abstract

The pathogenic bacteria Mycobacterium tuberculosis (MTB) is responsible for tuberculosis which is well known for the globally leading cause of death. The likelihood of false negative interpretation as well as potential influence from intrinsic and extrinsic factors are considerably minimized by the incorporation of internal control (IC) detection into the developed assay platform. Ratiometric electrochemical biosensor (REC biosensor) for detection of MTB was developed based on the IC integration via duplex PCR (dPCR) and a dual-signal electrochemical readout. The MTB- or IC-specific PNA probe was labeled with methylene blue (MB) or ferrocene (FC), respectively at the C terminus, producing a strong square wave voltammetry (SWV) signal. Interaction of the ICdPCR product could induce changes in the dynamics of these two redox-labeled PNA probes (MTB-MB and IC-FC) that were attached to the screen-printed gold electrode (SPGE) via formation of a self-assembled monolayer. Using this MB as a reporter and FC as an IC, the REC ICdPCR biosensor achieved a broad detection range from 10 fM to 10 nM and a detection limit of 1.26 fM, corresponding to approximately 2.5 bacteria cells. The REC ICdPCR biosensor was applied to MTB measurement in practical samples, exhibiting high accuracy and more importantly high practicability.

Funder

BioNano Health Guard Research Center (H-GUARD), Korea Research Institute of Bioscience and Biotechnology (KRIBB),

National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA),

Publisher

The Electrochemical Society

Subject

Materials Chemistry,Electrochemistry,Surfaces, Coatings and Films,Condensed Matter Physics,Renewable Energy, Sustainability and the Environment,Electronic, Optical and Magnetic Materials

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3