Abstract
Since the commercialization of rechargeable Li ion batteries in the early 1990 s, the performance of these devices has continually improved. In such batteries, graphite is typically used as the negative electrode and the present work examined the reaction mechanisms at graphite negative electrodes based on operando synchrotron X-ray diffraction analyses during charge/discharge. The resulting in-plane diffraction patterns of the Li-intercalated graphite permitted a detailed analysis of changes in the three-dimensional structure of the electrode. As the intercalation proceeded from a dilute stage 1 (with less Li intercalation) to a final stage 1 (the formation of LiC6), the material transitioned from a random in-plane structure to a p(√3 × √3)R30° in-plane structure via a superlattice based on a p(3 × 3)R0° in-plane structure. The data also indicate that a series of superlattices was formed during the reaction of the electrode as a result of successive rearrangements, depending on the amount of Li intercalated into the graphite.
Funder
New Energy and Industrial Technology Development Organization
Publisher
The Electrochemical Society
Subject
Materials Chemistry,Electrochemistry,Surfaces, Coatings and Films,Condensed Matter Physics,Renewable Energy, Sustainability and the Environment,Electronic, Optical and Magnetic Materials
Cited by
22 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献