One-Dimensional Copper Oxide Nanoparticles Embedded Conductive Nanotube Arrays for High Performance Glucose Sensors

Author:

Qi Kaili,Liu Shan,Li Yuanyuan,Chen RongshengORCID,Liang Feng

Abstract

Non-enzymatic glucose sensors have been extensively exploited recently. But the nanostructured non-enzymatic sensors often suffer from the aggregation of the nanoscale particles and poor conductivity of the composed metal oxides. In this work, a highly conductive one-dimensional carbon nanofilm coated TiO2 nanotube arrays (TiO2@C NTAs) were fabricated as the substrate. Copper oxide nanoparticles (CuOx NPs) were then deposited on the substrate to prepare CuOx NPs/TiO2@C NTAs as the glucose sensor. Under optimal conditions, the CuOx NPs/TiO2@C NTAs sensor shows a linear dependence on glucose concentration from 0.001 to 2.467 mM, with a sensitivity of 1155.68 μA mM−1 cm−2. The detection limit is 0.17 μM (S/N = 3). The prepared sensor exhibits high reproducibility and selectivity towards glucose determination, with minimal response to the coexistent species such as mannose, fructose, and 4-acetaminophenol, etc. Monitoring glucose from human serum sample has also been conducted, suggesting good reliability of this sensor.

Funder

Ministry of Science and Technology of the People’s Republic of China

Publisher

The Electrochemical Society

Subject

Materials Chemistry,Electrochemistry,Surfaces, Coatings and Films,Condensed Matter Physics,Renewable Energy, Sustainability and the Environment,Electronic, Optical and Magnetic Materials

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3