Abstract
First time in the literature, we imprinted 8-hydroxyguanosine (8OHG) to engineer an impedimetric sensor on a polymer from three different main non-covalent structures. Considering the chemical structure of the molecule and its potential non-covalent bonding behaviors, we designed a special electrode with molecular imprinting technology (MIT). Therefore, 8OHG, which serves as an important biomarker of oxidative stress, was imprinted on an electrode to form an 8OHG sensor. In this imprinting method, firstly, a gold electrode was modified with Cytosine-1yl-acetic acid (CAA) to increase selectivity and form DNA hydrogen bond-like structures. Afterward, pyrrole and aminophenyl boronic acid monomers were polymerized from three different points by electropolymerization, and a selective and sensitive sensor technology was developed. 8OHG measurement was carried out impedimetrically in six minutes (R2 value in the range of 500–10000 pg ml−1 is 0.9928 ± 0.006). LOD and LOQ was calculated 155.8 pg ml−1 and 472 pg ml−1, respectively. In conclusion, a sensitive, low-cost, fast and innovative technique with higher selectivity has been introduced. We believe that novel imprinting techniques will provide the important potential for MIP techniques for medical diagnostics.
Publisher
The Electrochemical Society
Subject
Materials Chemistry,Electrochemistry,Surfaces, Coatings and Films,Condensed Matter Physics,Renewable Energy, Sustainability and the Environment,Electronic, Optical and Magnetic Materials
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献