On the Specific Capacity and Cycle Stability of Si@void@C Anode: Effects of Electrolytes

Author:

Luo Mei,Liu Bingyu,Tatagari Vignyatha Reddy,Wang Ziyong,Shaw Leon L.ORCID

Abstract

Electrolytes play a critical role in the formation of stable solid electrolyte interphase (SEI) for Si anodes. This study investigates the impacts of five different electrolytes on the specific capacity and cycle stability of Si-based anodes and confirms the advantages of the second-generation (Gen2) electrolyte over the first-generation (Gen1) electrolyte in the first 200 cycles, beyond which the advantages of Gen2 electrolyte disappear. Addition of more FEC and VC additives to Gen2 electrolyte does not offer significant advantages in the cycle stability and specific capacities. However, very high FEC electrolytes with 20 wt% FEC and 80% dimethyl carbonate exhibits strong dependance on the lithiation cutoff voltage. This electrolyte results in durable SEI layers when the lithiation cutoff voltage is at 0.01 V vs Li/Li+. Furthermore, lowering the lithiation cutoff voltage from 0.1 V to 0.01 V vs Li/Li+ has raised the specific capacity of Si-based anodes, leading to higher specific capacities than those of graphite anodes at the electrode level for 380 cycles investigated in this study. The understandings developed here provide unambiguous guidelines for selection of electrolytes to achieve long cycle stability and high specific capacity of Si-based cells simultaneously in the future.

Funder

Division of Civil, Mechanical and Manufacturing Innovation

Publisher

The Electrochemical Society

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3