Study of ZnAl Hydroxides-Based Thin Films to Enhance the Filiform Corrosion Resistance of Acrylic-Coated AA5005

Author:

Fedel MicheleORCID,Zonta Stefano,Cristoforetti Andrea

Abstract

In recent years, the imperative to adopt a sustainable approach to aluminum coating pre-treatments due to environmental concerns has engaged researchers in corrosion studies. This work investigates Zn-Al hydroxides-based conversion coatings developed on AA5005 to enhance filiform corrosion (FFC) resistance. The conversion coatings were applied as a pre-treatment (200 nm–800 nm thick, depending on synthesis conditions) prior to coating with acrylic paint. The synthesis of the Zn-Al hydroxides conversion coating involves a rapid hydrothermal method at near-neutral pH. Electrochemical tests performed on the ZnAl hydroxides conversion coatings onto AA5005 revealed a substantial improvement in localized corrosion resistance. FFC tests in a climatic chamber exhibit a significant decrease (about 50%) in rust creep filament propagation compared to bare AA5005 after 1000 h. Those results were obtained employing Zn and Al salts at neutral pH for ten minutes at 95 °C. The findings obtained suggest that the synthesis process is of potential interest within the context of chemical surface conversion treatments for aluminum. In fact, eco-friendly metallic salts contribute to a more economical and environmentally friendly waste disposal process, making this treatment a potential solution for industrial applications, considering its simplicity, time efficiency, and use of non-toxic products.

Publisher

The Electrochemical Society

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3