Editors' Choice—Improving Quality of EDMed Micro-Holes on Titanium via In Situ Electrochemical Post-processing: A Transient Simulation and Experimental Study

Author:

Singh RamverORCID,Rakurty C. S.,Dvivedi Akshay,Kumar Pradeep

Abstract

Electrical discharge micromachining (EDM) poses challenges to the fatigue-life performance of machined surfaces due to thermal damage, including recast layers, heat-affected zones, residual stress, micro-cracks, and pores. Existing literature proposes various ex situ post-processing techniques to mitigate these effects, albeit requiring separate facilities, leading to increased time and costs. This research involves an in situ sequential electrochemical post-processing (ECPP) technique to enhance the quality of EDMed micro-holes on titanium. The study develops an understanding of the evolution of overcutting during ECPP, conducting unique experiments that involve adjusting the initial radial interelectrode gap (utilizing in situ wire-electrical discharge grinding) and applied voltage. Additionally, an experimentally validated transient finite element method (FEM) model is developed, incorporating the passive film formation phenomenon for improved accuracy. Compared to EDM alone, the sequential EDM-ECPP approach produced micro-holes with superior surface integrity and form accuracy, completely eliminating thermal damage. Notably, surface roughness (Sa) was reduced by 80% after the ECPP. Increasing the voltage from 8 to 16 V or decreasing the gap from 60 to 20 μm rendered a larger overcut. This research’s novelty lies in using a two-phase dielectric (water-air), effectively addressing dielectric and electrolyte cross-contamination issues, rendering it suitable for commercial applications.

Funder

SERB, Department of Science and Technology, Government of India

Publisher

The Electrochemical Society

Subject

Materials Chemistry,Electrochemistry,Surfaces, Coatings and Films,Condensed Matter Physics,Renewable Energy, Sustainability and the Environment,Electronic, Optical and Magnetic Materials

Reference39 articles.

1. The comparison of performance of electrolytic Cu and CuBe tool electrodes in electric discharge machining of Ti6Al4V alloy;Urtekin;El-Cezeri J. Sci. Eng.,2021

2. Investigation of electrochemical dissolution behavior of near-α TA15 titanium alloy in NaCl solution with low-frequency pulse current;He;J. Electrochem. Soc.,2022

3. Effect of anodic behavior on electrochemical machining of TB6 titanium alloy;Liu;Electrochim. Acta,2017

4. Improvement in corrosion resistance of commercial pure titanium for the enhancement of its biocompatibility;Mohsen;Mater. Corros.,2011

5. Titanium alloys and their machinability;Ezugwu;J. Mater. Process. Technol.,1997

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3