A Standardised Potentiometric Method for the Effective Parameterisation of Reversible Heating in a Lithium-Ion Cell

Author:

Hales AlastairORCID,Bulman James

Abstract

Lithium-ion batteries generate heat, degrading faster and becoming unsafe at high temperature. Yet many battery models do not consider the contribution of reversible, entropic heating when evaluating the rate of heat generation from a cell or battery pack. This leads to temperature prediction errors in battery management systems, increased safety risk, and reduced lifetime of the battery pack. Here, a standardised potentiometric method is proposed, allowing anyone with access to a typical battery lab to reliably and accurately extract the entropy coefficient for any electrochemical cell, the key parameter for the inclusion of reversible heating in a battery model. The proposed method takes 7.4 days to complete, representing a reduction of 90% compared to some methods proposed in the literature. Results highlight the importance of moving away from the multiple temperature steps, and the temperature step increases that dominate the existing literature. These arguments are justified through the observation and introduction of voltage relaxation following both kinetic and thermal excitation. These phenomena are termed post-kinetic-potentialisation and post-thermalisation-potentialisation. Post-thermalisation-potentialisation is not discussed in any published literature yet represents an important behavioural trait for any lithium-ion cell with a non-negligible length scale and thermal diffusivity.

Funder

Faraday Institution

University of Bristol

Publisher

The Electrochemical Society

Reference35 articles.

1. A general energy balance for battery systems;Bernardi;J. Electrochem. Soc.,1985

2. Measuring irreversible heat generation in lithium-ion batteries: an experimental methodology;Bravo Diaz;J. Electrochem. Soc.,2022

3. Influence of some design variables on the thermal behavior of a lithium-ion cell;Botte;J. Electrochem. Soc.,1999

4. Power and thermal characterization of a lithium-ion battery pack for hybrid-electric vehicles;Smith;J. Power Sources,2006

5. Thermal modeling of large format lithium-ion cells;Nieto;J. Electrochem. Soc.,2013

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3