Study Of Mercaptobenzimidazoles As Inhibitors For Copper Corrosion: Down to the Molecular Scale

Author:

Neupane Shova,Losada-Pérez Patricia,Tiringer Urša,Taheri Peyman,Desta Derese,Xie Chenyang,Crespo Daniel,Mol ArjanORCID,Milošev IngridORCID,Kokalj AntonORCID,Renner Frank UweORCID

Abstract

The initiation of corrosion can be triggered by defects in the adsorbed layer of organic inhibitors. A detailed knowledge of the intermolecular forces between the inhibitor molecules and the interfacial bonding will be decisive to unravel the mechanisms driving the corrosion initiation. In this work, adsorbed organic layers of 2-mercapto-5-methoxybenzimidazole (SH-BimH-5OMe) and 5-amino-2-mercaptobenzimidazole (SH-BimH-5NH2) were compared regarding their performance mitigating copper corrosion. Atomic force microscopy was used to address the stability and intermolecular forces of the self-assembled monolayers, using imaging and force measurement modes. For a film formed by amino-derivative molecules, a gold-coated tip frequently picked up individual molecules (molecular fishing) in force-distance measurements. For layers of the methoxy-derivative, no fishing events were observed, pointing to a constant functional layer. X-ray photoelectron spectroscopy revealed that SH-BimH-5OMe molecules form a stronger bond with the surface and more stable SAM layers on Cu surfaces as compared to SH-BimH-5NH2 molecules. Results of computational density functional theory modeling and electrochemical corrosion tests are in line with the microscopy and spectroscopy results. In particular, with aid of computational modeling the less ordered structure of the SH-BimH-5NH2 monolayer is attributed to dual bonding ability of SH-BimH-5NH2 that can adsorb with either S or NH2 groups.

Publisher

The Electrochemical Society

Subject

Materials Chemistry,Electrochemistry,Surfaces, Coatings and Films,Condensed Matter Physics,Renewable Energy, Sustainability and the Environment,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3