Corrosion-Induced Microstructural Variability Affects Transport-Kinetics Interaction in PEM Fuel Cell Catalyst Layers

Author:

Goswami Navneet,Mistry Aashutosh N.ORCID,Grunewald Jonathan B.,Fuller Thomas F.,Mukherjee Partha P.ORCID

Abstract

The ionomer, which is responsible for proton transport, oxygen accessibility to reaction sites, and binding the carbon support particles, plays a central role in dictating the catalyst layer performance. In this work, we study the effect of ionomer distribution owing to the corrosion induced degradation mode in the catalyst layer based on a combined mesoscale modeling and experimental image-based data. It is observed that the coverage of the ionomer over the platinum-carbon interface is heterogeneous at the pore-scale which in turn can critically affect the electrode-scale performance. Further, an investigation of the response of the pristine as well as degraded microstructures that have been exposed to carbon support corrosion has been demonstrated to highlight the kinetic-transport underpinnings on the catalyst layer performance decay.

Funder

National Science Foundation

Publisher

The Electrochemical Society

Subject

Materials Chemistry,Electrochemistry,Surfaces, Coatings and Films,Condensed Matter Physics,Renewable Energy, Sustainability and the Environment,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3